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A numerical experiment is performed in relation to mass transfer in binary 
mixtures. The results of the calculation agree satisfactorily with ex- 
perimental data. 

The most rigorous presentation of the mass-transfer problem demands the use of the 
following well-known equations of mathematical physics for every phase [i, 2]: the 
equations of motion, the continuity equations for the mixture as a whole, (n -- i) equa- 
tions of material balance covering each component, (n -- I) diffusion equations, and 
the energy equations. All the equations of the system are interlinked, reflecting the 
objective relationship between hydrodynamics and heat and mass transfer. 

In general this system cannot be solved. Furthermore, under the complicated con- 
ditions of processes taking place in chemical apparatus, the initial and boundary con- 
ditions cannot be accurately formulated. Hypotheses and models simplifying the prob- 
lem are therefore extensively used. In order to solve the fundamental problems it is 
preferable to use fairly realistic models based on the equations of hydrodynamics and 
convective diffusion, and to exploit the analogy between momentum transfer and mass 
(or heat) transfer involving turbulent pulsations [3-8]. Taking all this into con- 
sideration, we shall now formulate a model problem for convective diffusion in the 
turbulent flow of a many-component gas through a tube, and shall discuss the results 
of a numerical experiment relating to binary mixtures on the basis of this model. 

We decided to simulate a film column. In addition to the hypothesis as to the 
analogy between momentum and mass transfer, we had to make a number ef other assump- 
tions in order to simplify the problem to a form capable of numerical solution in com- 
puters of the M-220 type. 

i~. The principal assumption is that of neglecting the influence of mass transfer 
on the hydrodynamics; this greatly simplifies the problem, so that we may first solve 
the equations of motion for the velocity profile separately (or use experimental re- 
sults), and then solve the mass-transfer problem. This assumption does not lead to 
any serious errors [4-6] if we exclude the case of very high rates of mass transfer 
[9-11]. 

2. We assume that the turbulent viscosity coefficients calculated by means of the 
molar-average and mass-average velocities are equal. This is strictly only valid in 
the absence of mass transfer, but is practically valid when the rate of mass transfer 
is much smaller than the rate of the main flow. Actually, the mass-average velocity is 

W =-- mi~ivi, and the molar-average velocity v = niv i, where v i --- c/i(c, r)dc 
9 ~ n ~  - ~  n~ 
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is the average velocity of the i-th component in the laboratory system of coordinates. 

On calculating the difference w - - v  ~ - -  miNi, by means of these equations we see 
p i 

that v = w when N i = O. The latter equation is also practically valid for equimolar 

diffusion ( ~ N i = O ) .  
i 

3_~ The turbulent Schmidt criterion is taken as constant over the tube cross sec- 
tion. 

4_~ We assume that the axial velocity profile in the gas phase of the film 
column will be the same as in a tube with solid walls. 

5=. We only consider processes in which the resistance to mass transfer is con- 
centrated in the gas phase. 

6_=. We neglect diffusion in the axial and azimuthal directions. 

For the steady-state process expressed in dimensionless coordinates (x = 1 -- r/R, 
Z = z/L) we then obtain the equation of convective diffusion 

R v~ -- -I- ( 1 - - x  N~+  S% O x  L OZ v~ Ox ' 1 - - x  Ox - -  ' 

Oy~ _ R  Z N i ' q j - - N j ~ t i  , O = Z  N j (2) 
c) x i=f D i~ i 

and the boundary conditions 

V~ (0, x) = gio, (3) 

g~(Z, O) == y ~ ,  (4)  

Og~ x=l~O ~ral l  Z. ax (5)  

Here Yiw is found from the condition of equilibrium between the vapor and the 
liquid in a specific cross section of the tube. Condition (3) reflects the constancy 
of the concentration of incoming gas over the tube cross section, and (5) reflects the 
absence of a concentration gradient along the tube axis. 

The velocity profile vz, the radial velocity, and the turbulent viscosity coeffi- 
cient may be found by means of the three-layer Karman scheme. However, it is more con- 
venient and no less accurate to use the two-layer approximation of Wasan and Wilke [5, 
6]; we shall use this in this paper. 

The problem was set up for solution in the M-220 computer, a three-layer implicit 
difference scheme being used as a basis for the program [12, 13]. 

The numerical experiment for binary mixtures was carried out with the aim of sub- 
sequently using the results in order to provide an engineer's description of many-com- 
ponent mass transfer. We shall discuss the results obtained from this experiment, 
since these are of independent interest. 

Preliminary calculations showed that the Nusselt number Nu(d) only depended on 
the Re and Sc numbers and the ratio of the tube length to its diameter. This also fol- 
lows from a consideration of the invariance of the original equations for transforma- 
tions of this kind. 
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Fig. i. Dependence of the Nusse!t dif- 
fusion number Nu (d) on L/d: i) Re = 105 
Sc = 8; 2) Re = 105 , Sc = 4; 3) Re = 
105 , Sc = i; 4) Re = 105 , Sc = 0.5; 5) 

Re = 4.10 ~, Sc = 0.5; 6) Re = 3.104, 
Sc = 0.5; 7) Re = 2.10 ~, Sc = 0.5; 8) 
Re = i0 ~, Sc = 0.5. 

The defining criteria (numbers) were 
taken in the following ranges: 

L 
Re=lO ~-I05;  Sc=0 .5 - -8 ;  - 0 - - 1 0 0 .  

d 

It was found that the Nusselt diffusion num- 
ber fell with increasing L/d; this relation- 
ship was not expressible in power form 
(Fig. i). The value of L/d has the great- 
est influence on Nu (d) for small values of 
the Sc number (and constant Re values), 
since in this case the thickness of the dif- 
fusion layer in which D >> E/Sc T increases, 
and the creation of a developed concentra- 
tion profile takes place over a greater 
length of tube. For L/d > 30 the Nu(d) 
number may be regarded as practically inde- 
pendent of L/d for all values of the Schmidt 
number under consideration. The use of 
tubes with L/d > 30 enables us to study the 
dependence of Nu(d) on Re and Sc in pure 
form. 

The Nusselt number Nu (d) is shown as a 
function of the Re and Sc numbers in Fig. 2. 
An important point here is that, if we 
analyze the results in the most widely ac- 

cepted form Nu d = ARemSc n, we find that the power indices m and n themselves depend on 
the Re and Sc numbers. The greater the value of the Schmidt number, the more does the 
Reynolds number influence the intensity of mass transfer. This is quite natural, since 
on reducing the diffusion coefficient or increasing the viscosity of the mixture the 
coefficient of turbulent diffusion determined by the mode of flow plays a greater and 
greater part (Fig. 2a). On increasing the Re number, however, the power index of the 
Sc number (n) also increases (Fig. 2b); this reflects the lessening influence of the 
diffusion coefficient on the mass-transfer coefficient on increasing the degree of 
turbulence of the flow. These characteristics of the process are reflected in the 
well-known equation obtained by using the three-layer Karman scheme: 

I~NU- 

! 

2,o I 

/ ,e  

a 

o q~ qe ksc 

Fig. 2. Dependence of Nu(d) on Re (a) and Sc ~b). 
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Nu(d) = 
eSc 

1 + 5  S c - - 1  + l n l  6 " 

(6) 

which for Sc = i reduces to the Reynolds equation 

Nu (d) = f Re. (7)  
2 

S u b s e q u e n t  a n a l y s i s  w i l l  t h e r e i o r e  be  b a s e d  on Eq. ( 6 ) .  F l r s t  o f  a l l ,  i n  a c c o r d -  
a n c e  w i t h  Eq. ( 6 ) ,  i t  i s  c o n v e n i e n t  t o  ex am in e  t h e  r e s u l t s  o b t a i n e d  f o r  Sc = 1. 

A n a l y s i s  b a s e d  on t h e  method  o f  l e a s t  s q u a r e s  gave  t h e  power  i n d e x  o f  t h e  Re num- 
ber in the Sc = I case as 0.74. This is close to the value of 0.75 obtained by using 
the Blasius equation f = 0.079Re -~ Substituting the latter in (6), we have 

Nu (d)=  0.0395Re ~ Sc = 1. 

However, the relationship illustrated in Fig. 2a corresponds to a slightly different 
equation 

Nu = 0.0345Re ~ ~r  S c - - 1 .  (8) 

The difference between the values obtained for the critical number from Eq. (8) and 
from the numberical experiment is less than 1%, except for the values corresponding to 
Re = l0 s , in which case the error is 4.3%. 

Remembering that the thickness of the diffusion layer (determined from the condi- 
tion X + = 5 in the Karman scheme) actually depends on the form of motion, subsequent 
analysis of the results is based On the equation 

Nu(d) = _ _  
0.0345 ReO.75Sc (9) 

1 &aReb  [ S c - - 1 - } -  2.31g ( 1 -i- 5Sc 

The unknown quantities a and b were determined from the experimental data, not by 
any of the standard methods, but from only two points: Sc = 8, Re = i0 ~ and Sc = 0.5, 
Re = 8.10 ~. The result was 

Nu(d)= 0.0345Re~ (I0) 

The fact that the resultant equation (i0) correctly reflects the essentials of the pro- 
cess is confirmed by its excellent agreement with the numerical experiment. This may 
be seen from Fig. 2a (continuous lines). For most of the points the deviation of the 
experimental results from Eq. (i0) is less than 1%. 

A comparison between the results obtained and the generalized Notter relationship 
(8) for heat transfer shows that the analogy between mass and heat transfer is by no 
means complete. For Pr = i in particular, the Notter equation takes the form 

while for Sc = i Eq. (i0) gives 

Nu = 5 {- 0.016 Re ~ 

Nu( d)== 0,0345Re o,75. 

A comparison between Nu and Nu(d) for Sc = 1 gives the following 
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Re i0 ~ 3. I0 ~ 10 n 

Nu(d) 35 79 195 

Nu 38 88 231 

Let us compare the final result (i0) with the equation derived experimentally by 
E. Sh. Telyakov [14] in connection with the rectification of a mixture of n-heptane 
and toluene, for which the resistance to mass transfer was concentrated in the vapor 
phas e : 

Nu( d )=  1.642. i0-2  Re~ ~ . ( 1 1 )  

S i n c e  t h e  p o w e r  i n d e x  o f  t h e  Sc n u m b e r  was  n o t  d e t e r m i n e d  e x p e r i m e n t a l l y  i n  [ 1 4 ] ,  b u t  
t a k e n  a s  0 . 5  ( t h e  v a l u e  o f  t h e  Sc n u m b e r  v a r y i n g  f r o m  0 . 5  t o  0 . 7 ) ,  t h e  c o m p a r i s o n  p r e -  
s e n t e d  b e l o w  r e f e r s  t o  Sc = 0 . 6 .  The  Re n u m b e r  i n  t h e  e x p e r i m e n t s  v a r i e d  f r o m  6 , 1 0 3  
to 1.5.104: 

Re 6.10 a 9.I0 a 1,2.10 ~ 1,5.10 a 
Nu(d)from (11) 18,7 26,7 34,2 41 
Nu (d)from (10) 19,3 26,2 32,2 37,8 
Error % -{-, 3,2 - -  1,9 --8,2 --8,5 

The agreement between the numerical and physical experiments is better than might 
have been expected in view of the assumptions made in the present investigation. 

NOTATION 

N is the mass flow; R is the tube radius; L is the tube length; D is the diffu- 
sion coefficient; w is the mass-average velocity; v is the molar-average velocity; m 
is the molecular mass; n is the number of molecules; p is the density; c is the veloc- 
ity; ~i is the distribution function; r and z are the coordinates; y is the mole frac- 
tion; E is the turbulent viscosity coefficient; d is the tube diameter; ~ is the Fan- 
ning coefficient of friction; Nu is the Nusselt number; Re is the Reynolds number; Sc 
is the Schmidt number. Indices: i and j -- components of the mixture; z and x -- axial 
and radial directions; T -- turbulent; (d) -- diffusion. 
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